Delay chemical master equation: direct and closed-form solutions

نویسندگان

  • Andre Leier
  • Tatiana T. Marquez-Lago
چکیده

The stochastic simulation algorithm (SSA) describes the time evolution of a discrete nonlinear Markov process. This stochastic process has a probability density function that is the solution of a differential equation, commonly known as the chemical master equation (CME) or forward-Kolmogorov equation. In the same way that the CME gives rise to the SSA, and trajectories of the latter are exact with respect to the former, trajectories obtained from a delay SSA are exact representations of the underlying delay CME (DCME). However, in contrast to the CME, no closed-form solutions have so far been derived for any kind of DCME. In this paper, we describe for the first time direct and closed solutions of the DCME for simple reaction schemes, such as a single-delayed unimolecular reaction as well as chemical reactions for transcription and translation with delayed mRNA maturation. We also discuss the conditions that have to be met such that such solutions can be derived.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Periodic solutions of fourth-order delay differential equation

In this paper the periodic solutions of fourth order delay differential equation of the form $ddddot{x}(t)+adddot{x}(t)+f(ddot{x}(t-tau(t)))+g(dot{x}(t-tau(t)))+h({x}(t-tau(t)))=p(t)$  is investigated. Some new positive periodic criteria are given.  

متن کامل

Molecular finite-size effects in stochastic models of equilibrium chemical systems.

The reaction-diffusion master equation (RDME) is a standard modelling approach for understanding stochastic and spatial chemical kinetics. An inherent assumption is that molecules are point-like. Here, we introduce the excluded volume reaction-diffusion master equation (vRDME) which takes into account volume exclusion effects on stochastic kinetics due to a finite molecular radius. We obtain an...

متن کامل

A Pseudospectral Approximation to the Fundamental Matrix of a Linear Delay Differential Equation with Periodic Coefficients

The monodromy operator of a linear delay differential equation with periodic coefficients is formulated as an integral operator. The kernel of this operator includes a factor formed from the fundamental solution of the linear delay differential equation. Although the properties of the fundamental solutions are known, in general there is no closed form for the fundamental solution. This paper de...

متن کامل

Kinetic path summation, multi-sheeted extension of master equation, and evaluation of ergodicity coefficient

We study the master equation with time-dependent coefficients, a linear kinetic equation for the Markov chains or for the monomolecular chemical kinetics. For the solution of this equation a path summation formula is proved. This formula represents the solution as a sum of solutions for simple kinetic schemes (kinetic paths), which are available in explicit analytical form. The relaxation rate ...

متن کامل

Steady-state fluctuations of a genetic feedback loop: an exact solution.

Genetic feedback loops in cells break detailed balance and involve bimolecular reactions; hence, exact solutions revealing the nature of the stochastic fluctuations in these loops are lacking. We here consider the master equation for a gene regulatory feedback loop: a gene produces protein which then binds to the promoter of the same gene and regulates its expression. The protein degrades in it...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 471  شماره 

صفحات  -

تاریخ انتشار 2015